

53
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Predicting Software Defects Using Bayesian Approaches

Samuel King 1

1 University of Sydney - Australia,

kingsamuel081983@gmail.com,https://orcid.org/0009-0002-8194-7943

Copyright: © 2021

by the authors. This

article is an open

access article

distributed under

the terms and

conditions of the

Creative Commons

Received:

09 August, 2021

Accepted for

publication:

22 September,

2021

ABSTRACT

In the realm of software engineering, the anticipation of software flaws holds

significant importance as it enables developers to pinpoint and rectify issues

before they escalate into expensive and challenging bugs. Timely identification

of software defects not only economizes time and resources in the software

development lifecycle but also assures the ultimate quality of the end product.

This study seeks to assess three algorithms for constructing Bayesian Networks,

aiming to classify projects as susceptible to defects. While Naive Bayes is the

prevailing method in literature, this research introduces K2, Hill Climbing, and

TAN as alternatives for constructing Bayesian Networks. Meanwhile, three

publicly available PROMISE datasets are employed, incorporating McCabe and

Halstead complexity metrics. The obtained results are benchmarked against

widely used approaches like Decision Tree and Random Forest. Performance

metrics applied in a cross-validation process reveal that the classification

outcomes are on par with Decision Tree and Random Forest. Notably, Bayesian

algorithms exhibit lower variability, enhancing the robustness of software

engineering predictions. This advantage is evident in the consistent results of

training and test data selection, distinguishing them from the variable outcomes

observed in Decision Tree and Random Forest approaches.

Keywords: defect anticipation in software; Bayesian Networks; categorization;

machine learning

http://www.infotechjournal.org/
mailto:kingsamuel081983@gmail.com
https://orcid.org/0009-0002-8194-7943

54
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Predicción de Defectos de Software Utilizando Enfoques Bayesianos

RESUMEN

En el ámbito de la ingeniería de software, la anticipación de fallas en el software tiene una

importancia significativa, ya que permite a los desarrolladores identificar y corregir problemas antes

de que se conviertan en errores costosos y desafiantes. La identificación oportuna de defectos de

software no solo ahorra tiempo y recursos en el ciclo de desarrollo de software, sino que también

garantiza la calidad final del producto. Este estudio busca evaluar tres algoritmos para construir

Redes Bayesianas, con el objetivo de clasificar proyectos como susceptibles a defectos. Mientras

que Naive Bayes es el método predominante en la literatura, esta investigación presenta K2, Hill

Climbing y TAN como alternativas para construir Redes Bayesianas. Mientras tanto, se emplean tres

conjuntos de datos públicos de PROMISE, que incorporan métricas de complejidad de McCabe y

Halstead. Los resultados obtenidos se comparan con enfoques ampliamente utilizados como

Decision Tree y Random Forest. Las métricas de rendimiento aplicadas en un proceso de validación

cruzada revelan que los resultados de clasificación están a la par con Decision Tree y Random

Forest. Es importante destacar que los algoritmos bayesianos muestran una menor variabilidad,

mejorando la robustez de las predicciones en ingeniería de software. Esta ventaja es evidente en los

resultados consistentes de la selección de datos de entrenamiento y prueba, lo que los distingue de

los resultados variables observados en los enfoques de Decision Tree y Random Forest.

Palabras clave: anticipación de defectos en software; Redes Bayesianas; categorización;

aprendizaje automático

http://www.infotechjournal.org/

55
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

INTRODUCTION

The presence of software defects poses significant challenges and inconveniences in both software

development and maintenance, negatively impacting the overall quality of the software. Despite

meticulous processes during development, achieving completely defect-free software remains elusive.

Consequently, software testing becomes a pivotal phase in the software development life cycle,

serving as a means to proactively prevent or rectify potential software failures before deployment.

However, the testing process is often intricate, demanding thorough planning and substantial

resources [1]. Software defects exert substantial influence on performance, quality, costs, and user

satisfaction. Consequences of a high number of defects include delivery delays, unforeseen costs,

subpar user experiences, diminished customer confidence, and even security vulnerabilities. These

repercussions directly compromise software quality.

Given the adverse effects of detecting defects late in the development stages, the field of software

defect prediction (SDP) emerges, involving the creation of prediction models based on historical data

to anticipate future software faults [2]. Predicting defects becomes essential for identifying potentially

flawed modules in the software, facilitating the development of an efficient, reliable, and cost-

effective software product in a timely manner. The identification of defect-prone modules enables the

allocation of resources to prevent unforeseen costs.

Developing a software defect prediction model is a challenging task, and artificial intelligence,

particularly machine learning (ML) algorithms, can play a supportive role in predicting defects early

in the development process. Research by Hammouri et al. [2] discusses classifiers such as Naïve

Bayes (NB), Decision Trees (DT), and Artificial Neural Networks (ANN) for defect prediction.

However, Bayesian approaches, known for solving diverse problems across various domains, are

considered as alternatives that may offer superior precision [3].

Additionally, research by Herzig et al. [4] reveals that a considerable percentage of problem reports in

bug databases were misclassified, impacting the accuracy of defect prediction. Incorrect data quality

undermines the achievement of high prediction accuracy. Consequently, there is a need to explore the

performance and precision of lesser-explored algorithms based on Bayesian Networks. These

http://www.infotechjournal.org/

56
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

algorithms aim to provide software engineers with greater certainty in making estimates and

delivering high-quality products.

In a comprehensive examination of the literature conducted in [5], 38 studies from the period between

2016 and 2020 focused on software defect prediction, aiming to scrutinize the prevalent classification

approaches and algorithms in this domain. The analysis revealed that the most widely employed

approaches involve ensemble algorithms, with Random Forest [6,7] taking the lead, followed by other

algorithms like AdaBoost [8] and Bagging [9]. Similarly, approaches grounded in Bayes' theorem

were identified, although they exclusively relied on the Naive Bayes algorithm and its variants

[7,10,11].

Alternative methodologies, such as Decision Trees, specifically highlighting the prevalence of the

C4.5 algorithm, were also noted as extensively reported [10]. Furthermore, simpler classifiers,

including Support Vector Machine [12–14], K-Nearest-Neighbor [14], and Logistic Regression

[13,15], were utilized in various studies.

Recent works have undertaken comparisons between different approaches [16–18], particularly

focusing on ensemble methods that employ multiple algorithms and contrasting them with classical

approaches. Some studies, such as [19], delve into experimentation with various versions of a specific

algorithm, such as Support Vector Machine (SVM).

Motivation

The impetus behind this research is to aid software engineers in constructing defect prediction models

that are both more accurate and robust—models whose outcomes are not overly influenced by

variations in training data. This becomes crucial as effective defect prediction empowers teams to

pinpoint the areas and modules within the software most susceptible to bugs or defects. Such insights

enable development and testing teams to concentrate their efforts on these critical areas, thereby

mitigating the risk of defects spreading and compromising the overall functionality and quality of the

software.

http://www.infotechjournal.org/

57
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Problem Statement

A notable observation from the studies presented in Table 1 is that most of them only report the best

result. This aspect is significant because machine learning algorithms are often sensitive to training

data, exhibiting varying performance against test data. Achieving better results is contingent on the

similarity between test and training data. Hence, it is imperative to report the performance of

classification algorithms, ensuring not only precision but also robustness across diverse datasets.

Commonly employed cross-validation procedures are instrumental in generating models with distinct

training data subsets from the dataset and assessing their performance against different test subsets

that were not part of the training process.

Table 1 presents a synopsis and comparative analysis between our research and recent studies (NR =

Not Reported, DT = Decision Tree, EM = Ensemble Methods, NB = Naïve Bayes, NN = Neural

Networks, KNN = K-Nearest Neighbor, SVM = Support Vector Machine, LR = Logistic Regression,

and BN = Bayesian Network).

Another notable observation from Table 1 is the existence of various versions of the same algorithm,

with the general version typically being the one reported. Additionally, when assessing an algorithm

within a specific approach, such as Decision Tree, Ensemble Methods, or KNN, among others, many

studies do not include comparisons with alternative approaches. Notably, no works cited in the

literature employed Bayesian Networks, although the conventional Naive Bayes algorithm was

commonly utilized. We speculate that the limited adoption of Bayesian Networks in software

engineering may stem from a potential lack of familiarity with this particular approach. However, we

believe it holds numerous advantages, as elaborated upon in this article, making it a promising option

for enhancing performance.

http://www.infotechjournal.org/

58
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Contribution

The primary contribution of our research is outlined below

• This paper empirically presents the outcomes of employing classification algorithms based on

Bayes' theorem, a facet not extensively reported in the existing literature on software defect

prediction. Specifically, various methods of constructing Bayesian Networks are explored to

offer software engineers alternative strategies for predicting defects in their projects.

• The selection of Bayesian Networks is justified by the recognition that merely knowing the

value of the class variable is insufficient for software engineers and testers. It is equally

crucial to understand the characteristics that warrant heightened attention. Additionally,

certain algorithms, like KNN or Random Forest, may not explicitly express the variables most

influential in the classification task.

• The tests are conducted on the well-established public PROMISE repository, ensuring

repeatability and comparability of results.

• A statistical comparison is conducted on the tests using a 10-fold cross-validation method, a

common practice in the literature. This analysis unveils the performance of the algorithms

across different training and test data, providing insights into both optimal and suboptimal

outcomes and assessing the variability in their performance.

• The proposed methods in the experimentation are compared with two approaches mentioned

in the literature, namely J48 (Decision Trees approach) and Random Forest (ensemble

algorithms approach).

• Notably, the comparison in this paper refrains from including the precision metric due to its

bias towards the class value that appears most frequently in unbalanced datasets. Instead,

metrics such as recall, accuracy, and F1-measure are utilized, capturing diverse aspects of a

model's performance.

• The results are deliberated upon to strike a balance between precision and robustness in the

various methods tested.

http://www.infotechjournal.org/

59
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

• The significance of this work lies in the realm of software defect prediction, offering

developers and project leaders insights into when a system can be released, thereby reducing

the use of unforeseen resources and enhancing the user experience by minimizing the number

of defects.

Structure of the Paper

The organization of this document is as follows: Section 2 provides an overview of related works that

informed the decisions made for the experimentation in this research. Section 3 outlines our proposed

approach. Section 4 details the characteristics of the utilized datasets. Section 5 delves into the

experiments, evaluation criteria, and analysis of the primary results. Lastly, Section 6 concludes the

paper and outlines directions for future work.

Related Work

The literature cited in Section 1 played a pivotal role in shaping the focus of this research. While the

Bayesian approach is widely employed, our exploration of Bayesian Networks, distinct from the

commonly used Naive Bayes, presents a valuable opportunity. Moreover, the methodologies

introduced in this study will be juxtaposed with the algorithms and approaches most prevalent in the

existing literature. Specifically, an ensemble approach like Random Forest and a Decision Tree,

exemplified by C4.5, are chosen for comparison.

Table 2 displays the metrics utilized to assess the performance of classifiers and presents their

corresponding results. Key metrics highlighted include precision, recall, F1-measure, accuracy, and

area under the curve. This selection is significant because the optimal evaluation of an algorithm

depends on the metric employed. Therefore, it is crucial to assess algorithms using various metrics, as

they capture different aspects of performance and can address issues such as class imbalance or

overfitting. The most widely recognized metrics were chosen to ensure a comprehensive evaluation of

the research results. However, it is worth noting that, as indicated in Table 2, several related works

concentrate solely on describing the precision of a proposal using a single metric. This raises

suspicion, considering the nature of the data necessitates the use of different metrics based on the

class, rather than relying solely on percentage accuracy.

http://www.infotechjournal.org/

60
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Table 2 provides a summary of metrics and validation methods documented in recent research,

denoting instances where information is not reported with "NR" for clarity.

Moreover, Table 2 reveals that a considerable number of studies do not specify a model validation

method. This omission is significant because the selection of data for training and testing the models

plays a crucial role in influencing the obtained results.

Our Proposal

While various algorithms exist for predicting software defects with reasonable accuracy, it is

imperative to explore alternative classification methods that can achieve higher accuracy rates in

software defect prediction. The selected algorithm should positively impact software reliability,

quality, and mitigate high costs. Enhancing software defect accuracy implies improvements in

developer performance, reduced testing times, and more efficient resource allocation for project

managers. We prioritize this approach due to its advantages over other models.

The primary rationale for choosing Bayesian Networks lies in their capability to model causal

relationships between variables, aiding in understanding the interplay of features in a software product

that influence its susceptibility to defects. Additionally:

1. Bayes' theorem inherently handles uncertainty in the data, which is crucial when dealing with

noisy or incomplete data.

http://www.infotechjournal.org/

61
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

2. Bayesian Networks are flexible and can accommodate various types of variables, including

continuous and discrete variables, allowing the incorporation of diverse software metrics.

3. Unlike some machine learning algorithms (e.g., K-Nearest Neighbor or Random Forest), the

structure of Bayesian Networks is interpretable. This interpretability is essential for software

engineers who can visually interpret relationships between software attributes through a graph

and focus on those influencing a defective product negatively.

Bayesian Approach

Bayes' Theorem, developed by the British mathematician and theologian Thomas Bayes, is a

proposition used to calculate the conditional probability of an event. This theorem aims to determine

the probability of one event in comparison to the probability of a similar event. In essence, it enables

the calculation of the conditional probability of an event, denoted as A given B, wherein the

probability distribution of event B given A is analyzed [20].

The Bayes formula, also known as Bayes' rule, encompasses three distinct probabilities, as shown in

Equation (1): P(A) represents the a priori probability of event A, P(A|B) denotes the posteriori

probability of event A, and P(B|A) signifies the probability of event B based on the information from

event A.

Bayesian Networks

The Bayesian Network, a classifier grounded in Bayes' theorem, serves as its fundamental

underpinning. This network is a graphical model illustrating variables, often termed nodes, within a

dataset and the probabilistic or conditional dependencies existing among them. While a Bayesian

Network can reveal causal relationships between nodes, the links in the network, also referred to as

edges, may not necessarily indicate direct cause-and-effect connections.

Contrary to this, Bayesian Networks belong to the category of probabilistic models utilizing Bayesian

inference for probability calculations. They aim to depict conditional dependency and causality by

http://www.infotechjournal.org/

62
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

representing these dependencies through edges in a directed graph. These relationships facilitate

efficient inference about random variables within the graph through the utilization of factors.

This classifier was chosen due to its compact, flexible, and interpretable representation of a joint

probability distribution. Furthermore, it proves valuable for knowledge discovery as directed acyclic

graphs portray causal relationships between variables [21]. Additionally, this model provides crucial

insights into the relationships among variables, which can be interpreted as cause-and-effect

relationships. Figure 1 illustrates the structure of a Bayesian Network in the form of a directed acyclic

graph, reflecting the relationships among variables representing conditional probabilities. For

instance, variable C is conditional on variables A and B.

Figure 1. Directed Acyclic Graph (DAG) Representation of a Bayesian Network

Nevertheless, there isn't a singular approach to generating a Bayesian Network, and the method of

initialization and construction will depend on the obtained results. To address this, three methods for

constructing a Bayesian Network, intended for application in the context of software defect

prediction, are outlined below.

TAN

Also recognized as Tree Augmented Naïve Bayesian Network, this algorithm involves constructing a

dependency tree connecting the variables to be predicted, with these variables serving as children of

the class variable. Consequently, the probability of these variables is calculated by applying Bayes'

theorem based on the probability of the class variable [22]. In essence, TAN assumes conditional

http://www.infotechjournal.org/

63
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

independence among all variables given the class variables, thereby permitting predictor variables to

depend on each other. Figure 2 illustrates how TAN forms a Bayesian Network, where the variable

class lacks parents, and the features (attributes) have the variable class and, at most, one additional

attribute as parents.

Figure 2. Initialization of Bayesian Network Structure using TAN

Hill Climbing

Hill Climbing, an optimization algorithm, commences with the initiation of a randomly generated

Bayesian Network [23]. The algorithm iteratively introduces or removes relationships for each node

or feature, calculating the probability of each node within the network based on the joint probability

of the class variable. The algorithm selects the optimal network with the highest quality, discarding

those that fail to meet its standards. The commonly employed score function for Bayesian Networks is

the log-likelihood function, quantifying the probability of the observed data given the network

structure and parameters. In essence, this function gauges how effectively the network predicts the

data, as illustrated in Equation (2), where S represents the score, G denotes the network structure, D is

the data, Xi signifies the i-th variable, and Pai represents the set of parents of Xi in G.

The K2 algorithm functions as a heuristic search, initiating with the most straightforward network—

one devoid of edges—and presupposes an ordered arrangement of nodes [24]. Embracing the concept

of the greedy algorithm, a quintessential structure-learning algorithm [25], K2 streamlines the process

of acquiring the Bayesian Network structure, obviating the need for substantial expert knowledge in

the problem domain. For each variable in the problem, the algorithm augments its parent set with the

http://www.infotechjournal.org/

64
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

node possessing the lowest probability, resulting in a maximal increase in quality corresponding to the

chosen quality measure in the rating process. This iterative process continues until either the quality

ceases to increase or a complete Bayesian Network is attained.

Building upon these three approaches for generating a Bayesian Network, the intention is to assess

their performance using the mentioned datasets.

Data Sets

The datasets utilized for evaluating the selected algorithms were sourced from the PROMISE

repository [26]. The rationale behind selecting these datasets lies in their public availability.

PROMISE datasets are made accessible to encourage the development of repeatable, verifiable,

refutable, and/or improvable predictive models in software engineering. Furthermore, PROMISE

stands out as one of the most widely utilized repositories for predicting software defects, as indicated

by results obtained in the RSL. Table 3 presents the chosen datasets, including their instance counts

and the distribution of defect classes.

Table 3. Class Distribution Across Datasets

CM1 represents a NASA spacecraft instrument implemented in the "C" language, JM1 is written in

"C" and serves as a real-time predictive ground system, while KC1 is a "C++" system responsible for

executing storage management for receiving and processing ground data. The discrete class variable

signifies whether the system exhibits defects or is defect-free.

Each dataset comprises 21 explanatory variables or features. Table 4 illustrates the categorization and

description of these features.

http://www.infotechjournal.org/

65
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Table 4. Breakdown of Attribute Types

McCabe Metrics

McCabe posited that code featuring intricate pathways is more susceptible to errors. Consequently, his

metrics center on capturing the pathways within a code module [27].

Cyclomatic complexity, a key metric, is derived from counting the number of individual logical paths

in a program. Thomas McCabe employed graph theory and flow to calculate software complexity. The

program is portrayed as a graph, with each instruction serving as a graph node. The potential paths of

execution from an instruction (node) are depicted as edges in the graph.

As per the PROMISE repository, McCabe metrics comprise a trio of software metrics, as detailed in

Table 5.

Table 5. Metrics According to McCabe's Methodology

Halstead Metrics

Halstead introduced a precise method for gauging a program's size [28]. His approach involves

viewing the code as comprised of units termed operators and operands, akin to the tokens discernible

by a compiler in that code [29]. Moreover, these operators and operands don't uniformly contribute to

complexity. It's imperative to consider not only the total count of elements (operands and operators)

but also the count of distinct elements, representing the program's language. Table 6 delineates the

fundamental and derived attributes of Halstead metrics.

http://www.infotechjournal.org/

66
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Table 6. Metrics According to Halstead's Methodology

Additional Metrics

Among the remaining six metrics, five pertain to lines of code, and one pertains to branch count.

Table 7 outlines the attributes of these final metrics, indicating that for the count of code lines, one is

proposed by McCabe, and four are proposed by Halstead. The branch count is derived from the flow

graph.

Table 7. Additional Metrics

Data Preprocessing

Upon acquiring the data, our initial step involves checking for any missing data. Despite the

identification of outliers in the datasets, we opted not to remove them. The rationale behind this

decision is rooted in the fact that, as we did not gather the data ourselves, we cannot ascertain whether

these outliers are the result of data capture errors or genuinely represent atypical data. This

underscores a drawback of utilizing publicly available data captured by other individuals, as we lack

direct access to the respective projects.

http://www.infotechjournal.org/

67
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Experiments and Results

This section delineates the methodology employed to validate models in the experimentation, the

metrics applied, and the noteworthy results obtained during the assessment of these Bayesian

approaches using the PROMISE defect prediction datasets. All experiments were conducted on a

platform utilizing Weka 3.9.6, compatible with a Windows 10 Operating system equipped with an

Intel Core i7 3.6 GHz processor and 8 GB RAM. The experimental parameters, outlined in Table 8,

provide details for reproducibility. It is worth noting that some configuration parameters are specific

to particular search algorithms.

Table 8. Configuration of Experimental Parameters in Weka Software

Cross-Validation

Cross-validation, a technique employed in machine learning and statistics, serves to assess a model's

performance on data that were not utilized during the training phase. The selection of cross-validation

stems from its ability to ensure instances of the faulty class are present in every test set, thereby

diminishing the likelihood of classification uncertainty [30]. Instances are partitioned into "folds," and

in each iteration, the instances within each fold act as test data, while the remaining instances

constitute the training data for model construction. The computed errors are then averaged across all

runs.

The choice of the number of folds was influenced by a review of experiments detailed in the

literature, as outlined in Section 2. Notably, all these experiments uniformly employed 10-fold cross-

validation. Consequently, we opted for the same configuration, utilizing ten folds to evaluate our

models consistently.

http://www.infotechjournal.org/

68
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Model Evaluation Metrics

Upon scrutinizing the literature, it was observed that in the realm of software defect prediction, the

most frequently utilized metrics for evaluating classification algorithms are accuracy, recall, and F1-

measure. These metrics are derived from the confusion matrix depicted in Table 9, where TPs

represent True Positives, FPs stand for False Positives, FNs denote False Negatives, and TNs signify

True Negatives. The presentation of the confusion matrix is instrumental, as the model evaluation

metrics, elucidated in the ensuing subsections, are constructed based on its values. This approach

ensures that optimal results align with the main diagonal of the confusion matrix.

Table 9. Structure of the Confusion Matrix

The metrics outlined below are widely employed across various domains to assess the performance of

prediction models, as detailed in [31]. Accuracy, represented by the ratio of both true positives (TP)

and true negatives (TN) to the total number of instances examined, is a key metric. The optimal

precision score is 1, while the lowest is 0. The calculation for accuracy is presented in Equation (3).

Precision, determined by the number of accurate positive predictions divided by the total number of

positive predictions, is another essential metric. A perfect precision outcome is 1, while the least

favorable is 0. Equation (4) illustrates the computation of precision, which is instrumental in gauging

the effectiveness of a machine learning model in classification tasks.

Recall, calculated as the number of positive predictions divided by the overall number of positives

(both correctly and incorrectly classified), provides insights into the model's ability to identify

http://www.infotechjournal.org/

69
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

instances. The highest recall result is 1, while the lowest is 0, with Equation (5) outlining the recall

calculation.

F1-measure, defined as the weighted harmonic mean of precision and recall, serves as a consolidated

measure combining both precision and recall for comparative analysis of different machine learning

algorithms. The computation for F1-measure is depicted in Equation (6).

In this study, the proposed algorithms were benchmarked against two widely used algorithms in the

literature, namely Decision Tree and Random Forest. The evaluation considered the best results

achieved by the classifiers within each dataset. The assessment results for the algorithms are presented

in the subsequent sections, categorized by metric and dataset.

Accuracy Results

The accuracy outcomes are detailed in Tables 10–12, providing a comprehensive analysis of the K2,

Hill Climbing, and TAN algorithms based on descriptive accuracy statistics for each dataset. Across

these tables, there is minimal variability observed in the results across the ten folds. Additionally, a

notable similarity is noted in the outcomes among the three algorithms.

Table 10 provides descriptive statistics for accuracy in the CM1 dataset

Table 11 presents descriptive statistics for accuracy in the JM1 dataset

http://www.infotechjournal.org/

70
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Table 12 displays descriptive statistics for accuracy in the KC1 dataset

Figures 3–5 depict the variability observed in cross-validation runs for each dataset. Figure 3

highlights the stability of accuracy in each run for the K2 and Hill Climbing algorithms. Conversely,

the TAN algorithm exhibits substantial variation, indicating increased variability in results when

classifying the data using this approach. In Figure 4, similar to the CM1 dataset, the JM1 dataset

demonstrates minimal variability with the K2 and Hill Climbing algorithms. This suggests that these

algorithms yield consistent results with the dataset, regardless of the projects used for training and

testing. However, the TAN algorithm produces highly variable results. Lastly, Figure 5 reveals that, in

the KC1 dataset, the TAN algorithm exhibits the most variability in accuracy. Nevertheless, there is

also variability with the K2 and Hill Climbing algorithms, unlike the CM1 and JM1 datasets. Figure 5

also suggests that the choice of data for training and testing the KC1 dataset plays a significant role in

achieving better or worse precision in data classification.

Figure 3 illustrates the fluctuation in accuracy within the CM1 dataset

http://www.infotechjournal.org/

71
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Figure 4 displays the variability in accuracy within the JM1 dataset

Figure 5 demonstrates the variability in accuracy within the KC1 dataset

Table 13 presents a comparison of accuracy among the proposed algorithms and other classifiers, such

as Decision Tree and Random Forest. It is evident that the latter two achieved a higher accuracy

percentage than the Bayesian classifiers. However, it is noteworthy that they also exhibit a higher

standard deviation. This is significant as cross-validation indicates that their results display

considerable variability, and their outcomes are not consistently stable. In the case of the JM1 dataset,

the results by classifiers are more evenly balanced. It is important to highlight that, in this assessment,

the TAN classifier achieved a higher result than the Decision Tree classifier, although Random Forest

http://www.infotechjournal.org/

72
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

still outperforms all. Finally, for the KC1 dataset, it is apparent that Decision Tree and Random Forest

exhibit the highest accuracy.

Table 13 displays the accuracy outcomes for various datasets with alternative approaches.

Recall Outcomes

Tables 14–16 present the effectiveness of the K2, Hill Climbing, and TAN algorithms, as indicated by

descriptive recall statistics for each dataset. Notably, the performance in this metric demonstrates

greater stability than accuracy and yields superior results. Among these algorithms, K2 stands out as

the most effective, achieving higher recall with virtually zero standard deviation.

Table 14 provides descriptive statistics for recall in the CM1 dataset

Table 15 presents descriptive statistics for recall in the JM1 dataset

Table 16 showcases descriptive statistics for recall in the KC1 dataset.

http://www.infotechjournal.org/

73
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Figure 6 depicts boxplot diagrams illustrating recall in the CM1 dataset for each algorithm. It is

observable that for K2 and Hill Climbing, no box is formed since they remain unchanged in each

execution. In contrast, TAN exhibits more pronounced variability in its results, leading to the creation

of a box.

Figure 6. Fluctuations in recall within the CM1 dataset

In Figure 7, which represents the experiment conducted with the JM1 dataset, it is evident that, unlike

the experiment with the CM1 dataset, the data obtained through K2 and Hill Climbing already exhibit

minimal variability. Conversely, TAN continues to demonstrate more pronounced variability among

its results.

Figure 7. Fluctuations in recall within the JM1 dataset

Ultimately, Figure 8 illustrates that the K2 algorithm produces consistent results without any

variations, achieving a recall of 100% (equivalent to 1). Conversely, Hill Climbing also attains 100%,

but it exhibits variations in its results.

http://www.infotechjournal.org/

74
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Figure 8. Fluctuations in recall within the KC1 dataset

In conclusion, the recall results from runs with the Decision Tree and Random Forest algorithms were

also subject to comparison. Table 17 highlights that in the CM1 dataset, the Bayesian algorithms

outperformed other approaches, displaying not only superior results but also a lower standard

deviation. This indicates that their outcomes are concentrated within a narrower range of values.

Notably, the K2 algorithm achieved a standard deviation value of 0, attaining a recall of 1, akin to Hill

Climbing and TAN, albeit with variations in their standard deviations. In the JM1 dataset, there is

some variability in the Bayesian approaches, but they achieve a higher recall than the Decision Tree

and Random Forest. Lastly, they exhibit a similar pattern in the KC1 dataset, showcasing minimal

variability and superior results for the Bayesian algorithms.

Table 17. Recall outcomes for various datasets with alternative approaches

F1-Measure Outcomes

Tables 18–20 present the effectiveness of the K2, Hill Climbing, and TAN algorithms, as indicated by

descriptive F1-measure statistics for each dataset. While a value of 1 is not achieved in any case, the

http://www.infotechjournal.org/

75
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

low variability of this metric is evident for Bayesian algorithms. Thus, it can be concluded that in

most instances, similar values will be obtained irrespective of the data used for testing or training.

Table 18 provides F1-measure descriptive statistics for the CM1 dataset.

Table 19 displays descriptive statistics for F1-measure in the JM1 dataset

Table 20 provides descriptive statistics for F1-measure in the KC1 dataset

Figures 9–11 illustrate the variation in F1-measure with each algorithm during the cross-validation

process. Figure 9 reveals minimal variability with K2 and Hill Climbing. However, in Figure 10,

while there is little variability, outliers are noticeable in K2 and Hill Climbing. Lastly, in Figure 11,

although no outliers are present, K2 consistently maintains the most stable results.

Figure 9. Fluctuations in F1-measure within the CM1 dataset.

http://www.infotechjournal.org/

76
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Figure 10. Fluctuations in F1-measure within the JM1 dataset

Figure 11. Fluctuations in F1-measure within the KC1 dataset

Table 21 reveals that there is not significant variation in results between the Bayesian algorithms and

Decision Tree and Random Forest. However, unlike recall, none of them reaches a value of 1.

Nevertheless, Bayesian algorithms, when compared to Decision Tree and Random Forest, exhibit

more consistency and, consequently, less variability. This characteristic enhances the reliability of

Bayesian algorithms across all datasets.

Table 21 displays the F1-measure results for various datasets using alternative approaches.

http://www.infotechjournal.org/

77
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

CONCLUSIONS

This research aimed to contribute to the field of software defect prediction by exploring lesser-known

classification approaches within software engineering. The utilization of Bayesian Networks was

proposed as an opportunity to enhance defect prediction, as these approaches had not been extensively

studied in the existing literature. The research employed cross-validation experiments to validate

prediction models, and the results were compared using metrics such as accuracy, precision, recall,

and F1-measure.

Upon analysis of the results, significant variability was observed among them. This variability can be

attributed to the imbalanced nature of the datasets used in the evaluations—specifically, CM1, JM1,

and KC1 sourced from the PROMISE repository. This imbalance introduces challenges during

experimentation. Consequently, future work could explore the use of algorithms that facilitate class

balancing.

The results indicate that initialization of a Bayesian Network using search algorithms like Hill

Climbing and K2 yields less variability in the evaluation metric values. This suggests greater

robustness and independence of the data selection process. In contrast, TAN consistently exhibited the

most significant variability across all experiments. This variability is linked to the structure of the

network formed from the training data. TAN utilizes a dependency tree to capture relationships

between variables in the Bayesian Network, typically assuming linear dependencies. If non-linear or

complex dependencies exist between variables, TAN may struggle to capture them effectively. Hence,

the choice of training data significantly influences the classification results.

Based on the analysis of the obtained results, it is deduced that while the three chosen Bayesian

algorithms did not significantly surpass those documented in the literature, with Random Forest

exhibiting the highest performance, the metrics used yielded comparable values. Notably, Bayesian

algorithms demonstrated less variability in results, rendering them robust to variations in data

selection for training or testing. This characteristic contrasts with Random Forest, which relies on the

selection of random samples, making it susceptible to fluctuations in accuracy.

http://www.infotechjournal.org/

78
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Therefore, the recommendation is to consider employing Bayesian algorithms, as their results are

comparable to Decision Tree and Random Forest, yet they offer consistent outcomes with minimal

variability, irrespective of the data chosen for training or testing.

For future research, a suggestion is made to compare the results of Bayesian approaches with other

ensemble classifiers beyond Random Forest. Ensemble classifiers combine multiple simpler models to

achieve more accurate and robust predictions. Examples of such classifiers include Gradient Boosting,

which constructs a weighted combination of weaker classification models, usually Decision Trees,

and Bagging, similar to Random Forest but allowing sampling with replacement. Ensemble

classification methods are advantageous for enhancing prediction accuracy by combining multiple

models. Simultaneously, Bayesian Networks represent models that facilitate probabilistic reasoning

by explicitly depicting relationships between variables. The selection between these approaches

depends on the specific problem, available data, and analysis objectives. This proposed future work

aims to assess whether investing in more complex algorithms enhances the accuracy of predicting

software defects.

Finally, although this study aimed to compare the performance of various machine learning

approaches (Decision Trees, ensemble algorithms, and Bayesian-based methods), these techniques

could be contrasted with alternative approaches such as estimation based on analogy. In this method,

previously completed projects similar to the one under estimation are selected. Another option could

involve a comparison with "expert judgment," where professionals in software estimation provide

estimates based on their experience.

BIBLIOGRAPHICAL REFERENCES

Meiliana, S.K., Karim, S., Warnars, H.L.H.S., Gaol, F.L., Abdurachman, E., Soewito, B. Software

Metrics for Fault Prediction Using Machine Learning Approaches: A Literature Review with

PROMISE Repository Dataset. In Proceedings of the 2022 IEEE International Conference on

Cybernetics and Computational Intelligence (CyberneticsCom), Phuket, Thailand, 20–22

November 2017.

http://www.infotechjournal.org/

79
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Hammanouri, A., Hammad, M., Alnabhan, M., Alsarayrah, F. Software Bug Prediction using Machine

Learning Approach. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 78–83.

Misirli, A., Bener, A.B. A Mapping Study on Bayeasian Networks for Software Quality Prediction. In

Proceedings of the 3rd International Workshop on Realizing Artificial Intelligence Synergies

in Software Engineering (RAISE), Hyderabad, India, 3 June 2014.

Herzing, K., Just, S., Zeller, A. It’s Not a Bug, It’s a Feature: How Misclassification Impacts Bug

Prediction. In Proceedings of 2013 35th International Conference on Software Engineering

(ICSE), San Francisco, CA, USA, 18–26 May 2013.

Hernández-Molinos, M.J., Sánchez-García, Á.J., Barrientos-Martínez, R.E. Classification Algorithms

for Software Defect Prediction: A Systematic Literature Review. In Proceedings of the 2021

9th International Conference in Software Engineering Research and Innovation (CONISOFT),

San Diego, CA, USA, 25–29 October 2021.

Li, R., Zhou, L., Zhang, S., Liu, H., Huang, X., Sun, Z. Software Defect Prediction Based on

Ensemble Learning. In Proceedings of 2019 2nd International Conference on Data Science

and Information Technology (DSIT), Seoul, Republic of Korea, 19–21 July 2019.

Aydin, Z.B.G., Samli, R. Performance Evaluation of Some Machine Learning Algorithms in NASA

Defect Prediction Data Sets. In Proceedings of the 2020 5th International Conference on

Computer Science and Engineering (UBMK), Diyarbakir, Turkey, 9–11 September 2020.

Goyal, S. Heterogeneous Stacked Ensemble Classifier for Software Defect Prediction. In Proceedings

of the 2020 Sixth International Conference on Parallel, Distributed and Grid Computing

(PDGC), Waknaghat, India, 6–8 November 2020.

Aljamaan, H., Alazba, A. Software Defect Prediction using Tree-Based Ensembles. In Proceedings of

the 16th ACM International Conference on Predictive Models and Data Analytics in Software

Engineering (PROMISE), Online, 8–9 November 2020.

Ge, J., Liu, J., Liu, W. Comparative Study on Defect Prediction Algorithms of Supervised Learning

Software Based on Imbalanced Classification Data Sets. In Proceedings of the 2018 19th

IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,

http://www.infotechjournal.org/

80
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Networking and Parallel/Distributed Computing (SNPD), Busan, Republic of Korea, 27–29

June 2018.

Prahba, C.L., Shivahumar, N. Software Defect Prediction Using Machine Learning Techniques. In

Proceedings of the 2020 4th International Conference on Trends in Electronics and

Informatics (ICOEI), Tirunelveli, India, 15–17 June 2020.

Ahmed, M.R., Ali, M.A., Ahmed, N., Zamal, M.F.B., Shamrat, F.M.J.M. The Impact of Software

Fault Prediction in Real-World Application: An Automated Approach for Software

Engineering. In Proceedings of the 2020 the 6th International Conference on Computing and

Data Engineering (ICCDE), Sanya, China, 4–6 January 2020.

Nehi, M.M., Fakhrpoor, Z., Moosavi, M.R. Defects in The Next Release; Software Defect Prediction

Based on Source Code Versions. In Proceedings of the Iranian Conference on Electrical

Engineering (ICEE), Mashhad, Iran, 8–10 May 2018

Zhou, Y., Shan, C., Sun, S., Wei, S., Zhang, S. Software Defect Prediction Model Based On KPCA-

SVM. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing,

Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data

Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019.

El-Shorbagy, S.A., El-Gammal, W.M., Abdelmoez, W.M. Using SMOTE and Heterogeneous Stacking

in Ensemble learning for Software Defect Prediction. In Proceedings of the 7th International

Conference on Software and Information Engineering (ICSIE), Cairo, Egypt, 2-4 May 2018.

Bhutamapuram, U.S.; Sadam, R. Within-project defect prediction using bootstrap aggregation based

diverse ensemble learning

technique. J. King Saud Univ. Comput. Inf. Sci. [Year], [Volume], [Pages].

Goyal, S. Handling class-imbalance with KNN (neighbourhood) under-sampling for software defect

prediction. Artif. Intell. Rev.

[Year], [Volume], [Pages].

http://www.infotechjournal.org/

81
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

Malhotra, R.; Meena, S. Defect prediction model using transfer learning. Soft Comput. [Year],

[Volume], [Pages].

Goyal, S. Effective software defect prediction using support vector machines (SVMs). Int. J. Syst.

Assur. Eng. Manag. [Year], [Volume],

[Pages].

Cornfield, J. Bayes Theorem. Rev. De L’institut Int. De Stat. [Year], [Volume], [Pages].

Madden, M.G. On the classification performance of TAN and general Bayesian networks. In Research

and Development in Intelligent

Systems XXV. SGAI 2008; Springer: London, UK, [Year]; pp. 3–16.

Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian network classifiers. Mach. Learn. [Year],

[Volume], [Pages].

Gámez, J.A.; Mateo, J.L.; Puerta, J.M. Learning Bayesian networks by hill climbing: Efficient

methods based on progressive

restriction of the neighborhood. Data Min. Knowl. Discov. [Year], [Volume], [Pages].

Cooper, G.F.; Herskovits, E. A Bayesian method for the induction of probabilistic networks from data.

Mach. Learn. [Year], [Volume],

[Pages].

He, Y.L.; Zhao, W.J.; Xu, Y.; Zhu, Q.X. Research and Improvement of K2 Algorithm Based on

Topological Sorting. In Proceedings

of the 2021 China Automation Congress (CAC), Beijing, China, [Year]; pp. 4623–4626.

Shirabad, J.S.; Menzies, T.J. The PROMISE Repository of Software Engineering Databases [Data

Set]; School of Information Technology and Engineering, University of Ottawa: Ottawa, ON,

Canada, [Year]; Available online: http://promise.site.uottawa.ca/

SERepository (accessed on 1 February 2022).

McCabe, T.J. A Complexity Measure. IEEE Trans. Softw. Eng. [Year], [Volume], [Pages].

Halstead, M.H. Elements of Software Science (Operating and Programming Systems Series) [Data

Set]; Elsevier Science Inc.: Amsterdam,

http://www.infotechjournal.org/

82
 www.infotechjournal.org

Volume 2, No. 1, January/December 2021

The Netherlands, [Year].

Henry, S.; Selig, C. Predicting Source-Code Complexity at the Design Stage. IEEE Softw. [Year],

[Volume], [Pages].

Fushiki, T. Estimation of Prediction Error by Using K-Fold Cross-Validation. Statics Comput. [Year],

[Volume], [Pages].

Das, N.N.; Kumar, N.; Kaur, M.; Kumar, V.; Singh, D. Automated deep transfer learning-based

approach for detection of

COVID-19 infection in chest X-rays. Irbm [2022], [43], [114-119].

http://www.infotechjournal.org/

