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ABSTRACT 
 

In the realm of software engineering, the anticipation of software flaws holds 

significant importance as it enables developers to pinpoint and rectify issues 

before they escalate into expensive and challenging bugs. Timely identification 

of software defects not only economizes time and resources in the software 

development lifecycle but also assures the ultimate quality of the end product. 

This study seeks to assess three algorithms for constructing Bayesian Networks, 

aiming to classify projects as susceptible to defects. While Naive Bayes is the 

prevailing method in literature, this research introduces K2, Hill Climbing, and 

TAN as alternatives for constructing Bayesian Networks. Meanwhile, three 

publicly available PROMISE datasets are employed, incorporating McCabe and 

Halstead complexity metrics. The obtained results are benchmarked against 

widely used approaches like Decision Tree and Random Forest. Performance 

metrics applied in a cross-validation process reveal that the classification 

outcomes are on par with Decision Tree and Random Forest. Notably, Bayesian 

algorithms exhibit lower variability, enhancing the robustness of software 

engineering predictions. This advantage is evident in the consistent results of 

training and test data selection, distinguishing them from the variable outcomes 

observed in Decision Tree and Random Forest approaches. 
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Predicción de Defectos de Software Utilizando Enfoques Bayesianos 

RESUMEN  

En el ámbito de la ingeniería de software, la anticipación de fallas en el software tiene una 

importancia significativa, ya que permite a los desarrolladores identificar y corregir problemas antes 

de que se conviertan en errores costosos y desafiantes. La identificación oportuna de defectos de 

software no solo ahorra tiempo y recursos en el ciclo de desarrollo de software, sino que también 

garantiza la calidad final del producto. Este estudio busca evaluar tres algoritmos para construir 

Redes Bayesianas, con el objetivo de clasificar proyectos como susceptibles a defectos. Mientras 

que Naive Bayes es el método predominante en la literatura, esta investigación presenta K2, Hill 

Climbing y TAN como alternativas para construir Redes Bayesianas. Mientras tanto, se emplean tres 

conjuntos de datos públicos de PROMISE, que incorporan métricas de complejidad de McCabe y 

Halstead. Los resultados obtenidos se comparan con enfoques ampliamente utilizados como 

Decision Tree y Random Forest. Las métricas de rendimiento aplicadas en un proceso de validación 

cruzada revelan que los resultados de clasificación están a la par con Decision Tree y Random 

Forest. Es importante destacar que los algoritmos bayesianos muestran una menor variabilidad, 

mejorando la robustez de las predicciones en ingeniería de software. Esta ventaja es evidente en los 

resultados consistentes de la selección de datos de entrenamiento y prueba, lo que los distingue de 

los resultados variables observados en los enfoques de Decision Tree y Random Forest. 
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INTRODUCTION 

The presence of software defects poses significant challenges and inconveniences in both software 

development and maintenance, negatively impacting the overall quality of the software. Despite 

meticulous processes during development, achieving completely defect-free software remains elusive. 

Consequently, software testing becomes a pivotal phase in the software development life cycle, 

serving as a means to proactively prevent or rectify potential software failures before deployment. 

However, the testing process is often intricate, demanding thorough planning and substantial 

resources [1]. Software defects exert substantial influence on performance, quality, costs, and user 

satisfaction. Consequences of a high number of defects include delivery delays, unforeseen costs, 

subpar user experiences, diminished customer confidence, and even security vulnerabilities. These 

repercussions directly compromise software quality. 

Given the adverse effects of detecting defects late in the development stages, the field of software 

defect prediction (SDP) emerges, involving the creation of prediction models based on historical data 

to anticipate future software faults [2]. Predicting defects becomes essential for identifying potentially 

flawed modules in the software, facilitating the development of an efficient, reliable, and cost-

effective software product in a timely manner. The identification of defect-prone modules enables the 

allocation of resources to prevent unforeseen costs. 

Developing a software defect prediction model is a challenging task, and artificial intelligence, 

particularly machine learning (ML) algorithms, can play a supportive role in predicting defects early 

in the development process. Research by Hammouri et al. [2] discusses classifiers such as Naïve 

Bayes (NB), Decision Trees (DT), and Artificial Neural Networks (ANN) for defect prediction. 

However, Bayesian approaches, known for solving diverse problems across various domains, are 

considered as alternatives that may offer superior precision [3]. 

Additionally, research by Herzig et al. [4] reveals that a considerable percentage of problem reports in 

bug databases were misclassified, impacting the accuracy of defect prediction. Incorrect data quality 

undermines the achievement of high prediction accuracy. Consequently, there is a need to explore the 

performance and precision of lesser-explored algorithms based on Bayesian Networks. These 
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algorithms aim to provide software engineers with greater certainty in making estimates and 

delivering high-quality products. 

In a comprehensive examination of the literature conducted in [5], 38 studies from the period between 

2016 and 2020 focused on software defect prediction, aiming to scrutinize the prevalent classification 

approaches and algorithms in this domain. The analysis revealed that the most widely employed 

approaches involve ensemble algorithms, with Random Forest [6,7] taking the lead, followed by other 

algorithms like AdaBoost [8] and Bagging [9]. Similarly, approaches grounded in Bayes' theorem 

were identified, although they exclusively relied on the Naive Bayes algorithm and its variants 

[7,10,11]. 

Alternative methodologies, such as Decision Trees, specifically highlighting the prevalence of the 

C4.5 algorithm, were also noted as extensively reported [10]. Furthermore, simpler classifiers, 

including Support Vector Machine [12–14], K-Nearest-Neighbor [14], and Logistic Regression 

[13,15], were utilized in various studies. 

Recent works have undertaken comparisons between different approaches [16–18], particularly 

focusing on ensemble methods that employ multiple algorithms and contrasting them with classical 

approaches. Some studies, such as [19], delve into experimentation with various versions of a specific 

algorithm, such as Support Vector Machine (SVM). 

Motivation 

The impetus behind this research is to aid software engineers in constructing defect prediction models 

that are both more accurate and robust—models whose outcomes are not overly influenced by 

variations in training data. This becomes crucial as effective defect prediction empowers teams to 

pinpoint the areas and modules within the software most susceptible to bugs or defects. Such insights 

enable development and testing teams to concentrate their efforts on these critical areas, thereby 

mitigating the risk of defects spreading and compromising the overall functionality and quality of the 

software. 
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Problem Statement 

A notable observation from the studies presented in Table 1 is that most of them only report the best 

result. This aspect is significant because machine learning algorithms are often sensitive to training 

data, exhibiting varying performance against test data. Achieving better results is contingent on the 

similarity between test and training data. Hence, it is imperative to report the performance of 

classification algorithms, ensuring not only precision but also robustness across diverse datasets. 

Commonly employed cross-validation procedures are instrumental in generating models with distinct 

training data subsets from the dataset and assessing their performance against different test subsets 

that were not part of the training process. 

Table 1 presents a synopsis and comparative analysis between our research and recent studies (NR = 

Not Reported, DT = Decision Tree, EM = Ensemble Methods, NB = Naïve Bayes, NN = Neural 

Networks, KNN = K-Nearest Neighbor, SVM = Support Vector Machine, LR = Logistic Regression, 

and BN = Bayesian Network). 

 

Another notable observation from Table 1 is the existence of various versions of the same algorithm, 

with the general version typically being the one reported. Additionally, when assessing an algorithm 

within a specific approach, such as Decision Tree, Ensemble Methods, or KNN, among others, many 

studies do not include comparisons with alternative approaches. Notably, no works cited in the 

literature employed Bayesian Networks, although the conventional Naive Bayes algorithm was 

commonly utilized. We speculate that the limited adoption of Bayesian Networks in software 

engineering may stem from a potential lack of familiarity with this particular approach. However, we 

believe it holds numerous advantages, as elaborated upon in this article, making it a promising option 

for enhancing performance. 
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Contribution 

The primary contribution of our research is outlined below 

• This paper empirically presents the outcomes of employing classification algorithms based on 

Bayes' theorem, a facet not extensively reported in the existing literature on software defect 

prediction. Specifically, various methods of constructing Bayesian Networks are explored to 

offer software engineers alternative strategies for predicting defects in their projects. 

• The selection of Bayesian Networks is justified by the recognition that merely knowing the 

value of the class variable is insufficient for software engineers and testers. It is equally 

crucial to understand the characteristics that warrant heightened attention. Additionally, 

certain algorithms, like KNN or Random Forest, may not explicitly express the variables most 

influential in the classification task. 

• The tests are conducted on the well-established public PROMISE repository, ensuring 

repeatability and comparability of results. 

• A statistical comparison is conducted on the tests using a 10-fold cross-validation method, a 

common practice in the literature. This analysis unveils the performance of the algorithms 

across different training and test data, providing insights into both optimal and suboptimal 

outcomes and assessing the variability in their performance. 

• The proposed methods in the experimentation are compared with two approaches mentioned 

in the literature, namely J48 (Decision Trees approach) and Random Forest (ensemble 

algorithms approach). 

• Notably, the comparison in this paper refrains from including the precision metric due to its 

bias towards the class value that appears most frequently in unbalanced datasets. Instead, 

metrics such as recall, accuracy, and F1-measure are utilized, capturing diverse aspects of a 

model's performance. 

• The results are deliberated upon to strike a balance between precision and robustness in the 

various methods tested. 
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• The significance of this work lies in the realm of software defect prediction, offering 

developers and project leaders insights into when a system can be released, thereby reducing 

the use of unforeseen resources and enhancing the user experience by minimizing the number 

of defects. 

Structure of the Paper 

The organization of this document is as follows: Section 2 provides an overview of related works that 

informed the decisions made for the experimentation in this research. Section 3 outlines our proposed 

approach. Section 4 details the characteristics of the utilized datasets. Section 5 delves into the 

experiments, evaluation criteria, and analysis of the primary results. Lastly, Section 6 concludes the 

paper and outlines directions for future work. 

Related Work 

The literature cited in Section 1 played a pivotal role in shaping the focus of this research. While the 

Bayesian approach is widely employed, our exploration of Bayesian Networks, distinct from the 

commonly used Naive Bayes, presents a valuable opportunity. Moreover, the methodologies 

introduced in this study will be juxtaposed with the algorithms and approaches most prevalent in the 

existing literature. Specifically, an ensemble approach like Random Forest and a Decision Tree, 

exemplified by C4.5, are chosen for comparison. 

Table 2 displays the metrics utilized to assess the performance of classifiers and presents their 

corresponding results. Key metrics highlighted include precision, recall, F1-measure, accuracy, and 

area under the curve. This selection is significant because the optimal evaluation of an algorithm 

depends on the metric employed. Therefore, it is crucial to assess algorithms using various metrics, as 

they capture different aspects of performance and can address issues such as class imbalance or 

overfitting. The most widely recognized metrics were chosen to ensure a comprehensive evaluation of 

the research results. However, it is worth noting that, as indicated in Table 2, several related works 

concentrate solely on describing the precision of a proposal using a single metric. This raises 

suspicion, considering the nature of the data necessitates the use of different metrics based on the 

class, rather than relying solely on percentage accuracy. 
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Table 2 provides a summary of metrics and validation methods documented in recent research, 

denoting instances where information is not reported with "NR" for clarity. 

 

Moreover, Table 2 reveals that a considerable number of studies do not specify a model validation 

method. This omission is significant because the selection of data for training and testing the models 

plays a crucial role in influencing the obtained results. 

Our Proposal 

While various algorithms exist for predicting software defects with reasonable accuracy, it is 

imperative to explore alternative classification methods that can achieve higher accuracy rates in 

software defect prediction. The selected algorithm should positively impact software reliability, 

quality, and mitigate high costs. Enhancing software defect accuracy implies improvements in 

developer performance, reduced testing times, and more efficient resource allocation for project 

managers. We prioritize this approach due to its advantages over other models. 

The primary rationale for choosing Bayesian Networks lies in their capability to model causal 

relationships between variables, aiding in understanding the interplay of features in a software product 

that influence its susceptibility to defects. Additionally: 

1. Bayes' theorem inherently handles uncertainty in the data, which is crucial when dealing with 

noisy or incomplete data. 
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2. Bayesian Networks are flexible and can accommodate various types of variables, including 

continuous and discrete variables, allowing the incorporation of diverse software metrics. 

3. Unlike some machine learning algorithms (e.g., K-Nearest Neighbor or Random Forest), the 

structure of Bayesian Networks is interpretable. This interpretability is essential for software 

engineers who can visually interpret relationships between software attributes through a graph 

and focus on those influencing a defective product negatively. 

Bayesian Approach 

Bayes' Theorem, developed by the British mathematician and theologian Thomas Bayes, is a 

proposition used to calculate the conditional probability of an event. This theorem aims to determine 

the probability of one event in comparison to the probability of a similar event. In essence, it enables 

the calculation of the conditional probability of an event, denoted as A given B, wherein the 

probability distribution of event B given A is analyzed [20]. 

The Bayes formula, also known as Bayes' rule, encompasses three distinct probabilities, as shown in 

Equation (1): P(A) represents the a priori probability of event A, P(A|B) denotes the posteriori 

probability of event A, and P(B|A) signifies the probability of event B based on the information from 

event A. 

 

Bayesian Networks 

The Bayesian Network, a classifier grounded in Bayes' theorem, serves as its fundamental 

underpinning. This network is a graphical model illustrating variables, often termed nodes, within a 

dataset and the probabilistic or conditional dependencies existing among them. While a Bayesian 

Network can reveal causal relationships between nodes, the links in the network, also referred to as 

edges, may not necessarily indicate direct cause-and-effect connections. 

Contrary to this, Bayesian Networks belong to the category of probabilistic models utilizing Bayesian 

inference for probability calculations. They aim to depict conditional dependency and causality by 
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representing these dependencies through edges in a directed graph. These relationships facilitate 

efficient inference about random variables within the graph through the utilization of factors. 

This classifier was chosen due to its compact, flexible, and interpretable representation of a joint 

probability distribution. Furthermore, it proves valuable for knowledge discovery as directed acyclic 

graphs portray causal relationships between variables [21]. Additionally, this model provides crucial 

insights into the relationships among variables, which can be interpreted as cause-and-effect 

relationships. Figure 1 illustrates the structure of a Bayesian Network in the form of a directed acyclic 

graph, reflecting the relationships among variables representing conditional probabilities. For 

instance, variable C is conditional on variables A and B. 

 
Figure 1. Directed Acyclic Graph (DAG) Representation of a Bayesian Network 

 

Nevertheless, there isn't a singular approach to generating a Bayesian Network, and the method of 

initialization and construction will depend on the obtained results. To address this, three methods for 

constructing a Bayesian Network, intended for application in the context of software defect 

prediction, are outlined below. 

TAN 

Also recognized as Tree Augmented Naïve Bayesian Network, this algorithm involves constructing a 

dependency tree connecting the variables to be predicted, with these variables serving as children of 

the class variable. Consequently, the probability of these variables is calculated by applying Bayes' 

theorem based on the probability of the class variable [22]. In essence, TAN assumes conditional 
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independence among all variables given the class variables, thereby permitting predictor variables to 

depend on each other. Figure 2 illustrates how TAN forms a Bayesian Network, where the variable 

class lacks parents, and the features (attributes) have the variable class and, at most, one additional 

attribute as parents. 

 
Figure 2. Initialization of Bayesian Network Structure using TAN 

 

Hill Climbing 

Hill Climbing, an optimization algorithm, commences with the initiation of a randomly generated 

Bayesian Network [23]. The algorithm iteratively introduces or removes relationships for each node 

or feature, calculating the probability of each node within the network based on the joint probability 

of the class variable. The algorithm selects the optimal network with the highest quality, discarding 

those that fail to meet its standards. The commonly employed score function for Bayesian Networks is 

the log-likelihood function, quantifying the probability of the observed data given the network 

structure and parameters. In essence, this function gauges how effectively the network predicts the 

data, as illustrated in Equation (2), where S represents the score, G denotes the network structure, D is 

the data, Xi signifies the i-th variable, and Pai represents the set of parents of Xi in G. 

 

The K2 algorithm functions as a heuristic search, initiating with the most straightforward network—

one devoid of edges—and presupposes an ordered arrangement of nodes [24]. Embracing the concept 

of the greedy algorithm, a quintessential structure-learning algorithm [25], K2 streamlines the process 

of acquiring the Bayesian Network structure, obviating the need for substantial expert knowledge in 

the problem domain. For each variable in the problem, the algorithm augments its parent set with the 
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node possessing the lowest probability, resulting in a maximal increase in quality corresponding to the 

chosen quality measure in the rating process. This iterative process continues until either the quality 

ceases to increase or a complete Bayesian Network is attained. 

Building upon these three approaches for generating a Bayesian Network, the intention is to assess 

their performance using the mentioned datasets. 

Data Sets 

The datasets utilized for evaluating the selected algorithms were sourced from the PROMISE 

repository [26]. The rationale behind selecting these datasets lies in their public availability. 

PROMISE datasets are made accessible to encourage the development of repeatable, verifiable, 

refutable, and/or improvable predictive models in software engineering. Furthermore, PROMISE 

stands out as one of the most widely utilized repositories for predicting software defects, as indicated 

by results obtained in the RSL. Table 3 presents the chosen datasets, including their instance counts 

and the distribution of defect classes. 

Table 3. Class Distribution Across Datasets 

 

CM1 represents a NASA spacecraft instrument implemented in the "C" language, JM1 is written in 

"C" and serves as a real-time predictive ground system, while KC1 is a "C++" system responsible for 

executing storage management for receiving and processing ground data. The discrete class variable 

signifies whether the system exhibits defects or is defect-free. 

Each dataset comprises 21 explanatory variables or features. Table 4 illustrates the categorization and 

description of these features. 
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Table 4. Breakdown of Attribute Types 

 

McCabe Metrics 

McCabe posited that code featuring intricate pathways is more susceptible to errors. Consequently, his 

metrics center on capturing the pathways within a code module [27]. 

Cyclomatic complexity, a key metric, is derived from counting the number of individual logical paths 

in a program. Thomas McCabe employed graph theory and flow to calculate software complexity. The 

program is portrayed as a graph, with each instruction serving as a graph node. The potential paths of 

execution from an instruction (node) are depicted as edges in the graph. 

As per the PROMISE repository, McCabe metrics comprise a trio of software metrics, as detailed in 

Table 5. 

Table 5. Metrics According to McCabe's Methodology 

 

Halstead Metrics 

Halstead introduced a precise method for gauging a program's size [28]. His approach involves 

viewing the code as comprised of units termed operators and operands, akin to the tokens discernible 

by a compiler in that code [29]. Moreover, these operators and operands don't uniformly contribute to 

complexity. It's imperative to consider not only the total count of elements (operands and operators) 

but also the count of distinct elements, representing the program's language. Table 6 delineates the 

fundamental and derived attributes of Halstead metrics. 
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Table 6. Metrics According to Halstead's Methodology 

 

Additional Metrics 

Among the remaining six metrics, five pertain to lines of code, and one pertains to branch count. 

Table 7 outlines the attributes of these final metrics, indicating that for the count of code lines, one is 

proposed by McCabe, and four are proposed by Halstead. The branch count is derived from the flow 

graph. 

Table 7. Additional Metrics 

 

Data Preprocessing 

Upon acquiring the data, our initial step involves checking for any missing data. Despite the 

identification of outliers in the datasets, we opted not to remove them. The rationale behind this 

decision is rooted in the fact that, as we did not gather the data ourselves, we cannot ascertain whether 

these outliers are the result of data capture errors or genuinely represent atypical data. This 

underscores a drawback of utilizing publicly available data captured by other individuals, as we lack 

direct access to the respective projects. 
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Experiments and Results 

This section delineates the methodology employed to validate models in the experimentation, the 

metrics applied, and the noteworthy results obtained during the assessment of these Bayesian 

approaches using the PROMISE defect prediction datasets. All experiments were conducted on a 

platform utilizing Weka 3.9.6, compatible with a Windows 10 Operating system equipped with an 

Intel Core i7 3.6 GHz processor and 8 GB RAM. The experimental parameters, outlined in Table 8, 

provide details for reproducibility. It is worth noting that some configuration parameters are specific 

to particular search algorithms. 

Table 8. Configuration of Experimental Parameters in Weka Software 

 

Cross-Validation 

Cross-validation, a technique employed in machine learning and statistics, serves to assess a model's 

performance on data that were not utilized during the training phase. The selection of cross-validation 

stems from its ability to ensure instances of the faulty class are present in every test set, thereby 

diminishing the likelihood of classification uncertainty [30]. Instances are partitioned into "folds," and 

in each iteration, the instances within each fold act as test data, while the remaining instances 

constitute the training data for model construction. The computed errors are then averaged across all 

runs. 

The choice of the number of folds was influenced by a review of experiments detailed in the 

literature, as outlined in Section 2. Notably, all these experiments uniformly employed 10-fold cross-

validation. Consequently, we opted for the same configuration, utilizing ten folds to evaluate our 

models consistently. 
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Model Evaluation Metrics 

Upon scrutinizing the literature, it was observed that in the realm of software defect prediction, the 

most frequently utilized metrics for evaluating classification algorithms are accuracy, recall, and F1-

measure. These metrics are derived from the confusion matrix depicted in Table 9, where TPs 

represent True Positives, FPs stand for False Positives, FNs denote False Negatives, and TNs signify 

True Negatives. The presentation of the confusion matrix is instrumental, as the model evaluation 

metrics, elucidated in the ensuing subsections, are constructed based on its values. This approach 

ensures that optimal results align with the main diagonal of the confusion matrix. 

Table 9. Structure of the Confusion Matrix 

 

 

The metrics outlined below are widely employed across various domains to assess the performance of 

prediction models, as detailed in [31]. Accuracy, represented by the ratio of both true positives (TP) 

and true negatives (TN) to the total number of instances examined, is a key metric. The optimal 

precision score is 1, while the lowest is 0. The calculation for accuracy is presented in Equation (3). 

 

Precision, determined by the number of accurate positive predictions divided by the total number of 

positive predictions, is another essential metric. A perfect precision outcome is 1, while the least 

favorable is 0. Equation (4) illustrates the computation of precision, which is instrumental in gauging 

the effectiveness of a machine learning model in classification tasks. 

 

Recall, calculated as the number of positive predictions divided by the overall number of positives 

(both correctly and incorrectly classified), provides insights into the model's ability to identify 

http://www.infotechjournal.org/


 
 

69 
                                                                                                                      www.infotechjournal.org 

Volume 2, No. 1, January/December 2021 

instances. The highest recall result is 1, while the lowest is 0, with Equation (5) outlining the recall 

calculation. 

 

F1-measure, defined as the weighted harmonic mean of precision and recall, serves as a consolidated 

measure combining both precision and recall for comparative analysis of different machine learning 

algorithms. The computation for F1-measure is depicted in Equation (6). 

 

In this study, the proposed algorithms were benchmarked against two widely used algorithms in the 

literature, namely Decision Tree and Random Forest. The evaluation considered the best results 

achieved by the classifiers within each dataset. The assessment results for the algorithms are presented 

in the subsequent sections, categorized by metric and dataset. 

Accuracy Results  

The accuracy outcomes are detailed in Tables 10–12, providing a comprehensive analysis of the K2, 

Hill Climbing, and TAN algorithms based on descriptive accuracy statistics for each dataset. Across 

these tables, there is minimal variability observed in the results across the ten folds. Additionally, a 

notable similarity is noted in the outcomes among the three algorithms. 

Table 10 provides descriptive statistics for accuracy in the CM1 dataset 

 

 

Table 11 presents descriptive statistics for accuracy in the JM1 dataset 
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Table 12 displays descriptive statistics for accuracy in the KC1 dataset 

 

 

Figures 3–5 depict the variability observed in cross-validation runs for each dataset. Figure 3 

highlights the stability of accuracy in each run for the K2 and Hill Climbing algorithms. Conversely, 

the TAN algorithm exhibits substantial variation, indicating increased variability in results when 

classifying the data using this approach. In Figure 4, similar to the CM1 dataset, the JM1 dataset 

demonstrates minimal variability with the K2 and Hill Climbing algorithms. This suggests that these 

algorithms yield consistent results with the dataset, regardless of the projects used for training and 

testing. However, the TAN algorithm produces highly variable results. Lastly, Figure 5 reveals that, in 

the KC1 dataset, the TAN algorithm exhibits the most variability in accuracy. Nevertheless, there is 

also variability with the K2 and Hill Climbing algorithms, unlike the CM1 and JM1 datasets. Figure 5 

also suggests that the choice of data for training and testing the KC1 dataset plays a significant role in 

achieving better or worse precision in data classification. 

 
Figure 3 illustrates the fluctuation in accuracy within the CM1 dataset 
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Figure 4 displays the variability in accuracy within the JM1 dataset 

 

 
Figure 5 demonstrates the variability in accuracy within the KC1 dataset 

 

Table 13 presents a comparison of accuracy among the proposed algorithms and other classifiers, such 

as Decision Tree and Random Forest. It is evident that the latter two achieved a higher accuracy 

percentage than the Bayesian classifiers. However, it is noteworthy that they also exhibit a higher 

standard deviation. This is significant as cross-validation indicates that their results display 

considerable variability, and their outcomes are not consistently stable. In the case of the JM1 dataset, 

the results by classifiers are more evenly balanced. It is important to highlight that, in this assessment, 

the TAN classifier achieved a higher result than the Decision Tree classifier, although Random Forest 

http://www.infotechjournal.org/


 
 

72 
                                                                                                                      www.infotechjournal.org 

Volume 2, No. 1, January/December 2021 

still outperforms all. Finally, for the KC1 dataset, it is apparent that Decision Tree and Random Forest 

exhibit the highest accuracy. 

Table 13 displays the accuracy outcomes for various datasets with alternative approaches. 

 

 

Recall Outcomes  

Tables 14–16 present the effectiveness of the K2, Hill Climbing, and TAN algorithms, as indicated by 

descriptive recall statistics for each dataset. Notably, the performance in this metric demonstrates 

greater stability than accuracy and yields superior results. Among these algorithms, K2 stands out as 

the most effective, achieving higher recall with virtually zero standard deviation. 

Table 14 provides descriptive statistics for recall in the CM1 dataset 

 

 

Table 15 presents descriptive statistics for recall in the JM1 dataset 

 

 

Table 16 showcases descriptive statistics for recall in the KC1 dataset. 
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Figure 6 depicts boxplot diagrams illustrating recall in the CM1 dataset for each algorithm. It is 

observable that for K2 and Hill Climbing, no box is formed since they remain unchanged in each 

execution. In contrast, TAN exhibits more pronounced variability in its results, leading to the creation 

of a box. 

 
Figure 6. Fluctuations in recall within the CM1 dataset 

 

In Figure 7, which represents the experiment conducted with the JM1 dataset, it is evident that, unlike 

the experiment with the CM1 dataset, the data obtained through K2 and Hill Climbing already exhibit 

minimal variability. Conversely, TAN continues to demonstrate more pronounced variability among 

its results. 

 
Figure 7. Fluctuations in recall within the JM1 dataset 

 

Ultimately, Figure 8 illustrates that the K2 algorithm produces consistent results without any 

variations, achieving a recall of 100% (equivalent to 1). Conversely, Hill Climbing also attains 100%, 

but it exhibits variations in its results. 
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Figure 8. Fluctuations in recall within the KC1 dataset 

 

In conclusion, the recall results from runs with the Decision Tree and Random Forest algorithms were 

also subject to comparison. Table 17 highlights that in the CM1 dataset, the Bayesian algorithms 

outperformed other approaches, displaying not only superior results but also a lower standard 

deviation. This indicates that their outcomes are concentrated within a narrower range of values. 

Notably, the K2 algorithm achieved a standard deviation value of 0, attaining a recall of 1, akin to Hill 

Climbing and TAN, albeit with variations in their standard deviations. In the JM1 dataset, there is 

some variability in the Bayesian approaches, but they achieve a higher recall than the Decision Tree 

and Random Forest. Lastly, they exhibit a similar pattern in the KC1 dataset, showcasing minimal 

variability and superior results for the Bayesian algorithms. 

Table 17. Recall outcomes for various datasets with alternative approaches 

 

 

F1-Measure Outcomes 

Tables 18–20 present the effectiveness of the K2, Hill Climbing, and TAN algorithms, as indicated by 

descriptive F1-measure statistics for each dataset. While a value of 1 is not achieved in any case, the 
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low variability of this metric is evident for Bayesian algorithms. Thus, it can be concluded that in 

most instances, similar values will be obtained irrespective of the data used for testing or training. 

Table 18 provides F1-measure descriptive statistics for the CM1 dataset. 

 

 

Table 19 displays descriptive statistics for F1-measure in the JM1 dataset 

 

 

Table 20 provides descriptive statistics for F1-measure in the KC1 dataset 

 

 

Figures 9–11 illustrate the variation in F1-measure with each algorithm during the cross-validation 

process. Figure 9 reveals minimal variability with K2 and Hill Climbing. However, in Figure 10, 

while there is little variability, outliers are noticeable in K2 and Hill Climbing. Lastly, in Figure 11, 

although no outliers are present, K2 consistently maintains the most stable results. 

 
Figure 9. Fluctuations in F1-measure within the CM1 dataset. 
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Figure 10. Fluctuations in F1-measure within the JM1 dataset 

 

 
Figure 11. Fluctuations in F1-measure within the KC1 dataset 

 

Table 21 reveals that there is not significant variation in results between the Bayesian algorithms and 

Decision Tree and Random Forest. However, unlike recall, none of them reaches a value of 1. 

Nevertheless, Bayesian algorithms, when compared to Decision Tree and Random Forest, exhibit 

more consistency and, consequently, less variability. This characteristic enhances the reliability of 

Bayesian algorithms across all datasets. 

Table 21 displays the F1-measure results for various datasets using alternative approaches. 
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CONCLUSIONS 

This research aimed to contribute to the field of software defect prediction by exploring lesser-known 

classification approaches within software engineering. The utilization of Bayesian Networks was 

proposed as an opportunity to enhance defect prediction, as these approaches had not been extensively 

studied in the existing literature. The research employed cross-validation experiments to validate 

prediction models, and the results were compared using metrics such as accuracy, precision, recall, 

and F1-measure. 

Upon analysis of the results, significant variability was observed among them. This variability can be 

attributed to the imbalanced nature of the datasets used in the evaluations—specifically, CM1, JM1, 

and KC1 sourced from the PROMISE repository. This imbalance introduces challenges during 

experimentation. Consequently, future work could explore the use of algorithms that facilitate class 

balancing. 

The results indicate that initialization of a Bayesian Network using search algorithms like Hill 

Climbing and K2 yields less variability in the evaluation metric values. This suggests greater 

robustness and independence of the data selection process. In contrast, TAN consistently exhibited the 

most significant variability across all experiments. This variability is linked to the structure of the 

network formed from the training data. TAN utilizes a dependency tree to capture relationships 

between variables in the Bayesian Network, typically assuming linear dependencies. If non-linear or 

complex dependencies exist between variables, TAN may struggle to capture them effectively. Hence, 

the choice of training data significantly influences the classification results. 

Based on the analysis of the obtained results, it is deduced that while the three chosen Bayesian 

algorithms did not significantly surpass those documented in the literature, with Random Forest 

exhibiting the highest performance, the metrics used yielded comparable values. Notably, Bayesian 

algorithms demonstrated less variability in results, rendering them robust to variations in data 

selection for training or testing. This characteristic contrasts with Random Forest, which relies on the 

selection of random samples, making it susceptible to fluctuations in accuracy. 
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Therefore, the recommendation is to consider employing Bayesian algorithms, as their results are 

comparable to Decision Tree and Random Forest, yet they offer consistent outcomes with minimal 

variability, irrespective of the data chosen for training or testing. 

For future research, a suggestion is made to compare the results of Bayesian approaches with other 

ensemble classifiers beyond Random Forest. Ensemble classifiers combine multiple simpler models to 

achieve more accurate and robust predictions. Examples of such classifiers include Gradient Boosting, 

which constructs a weighted combination of weaker classification models, usually Decision Trees, 

and Bagging, similar to Random Forest but allowing sampling with replacement. Ensemble 

classification methods are advantageous for enhancing prediction accuracy by combining multiple 

models. Simultaneously, Bayesian Networks represent models that facilitate probabilistic reasoning 

by explicitly depicting relationships between variables. The selection between these approaches 

depends on the specific problem, available data, and analysis objectives. This proposed future work 

aims to assess whether investing in more complex algorithms enhances the accuracy of predicting 

software defects. 

Finally, although this study aimed to compare the performance of various machine learning 

approaches (Decision Trees, ensemble algorithms, and Bayesian-based methods), these techniques 

could be contrasted with alternative approaches such as estimation based on analogy. In this method, 

previously completed projects similar to the one under estimation are selected. Another option could 

involve a comparison with "expert judgment," where professionals in software estimation provide 

estimates based on their experience. 
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