Introduction of 5G Mobile Network in Colombia
Keywords:
5G, extensive MIMO, 5G Colombia, O-RAN, 5G Latin AmericaAbstract
The implementation of the 5G mobile network is experiencing significant growth globally, providing commercially accessible services that enhance network performance metrics by reducing network latency in countries such as the USA, China, and Korea. Nevertheless, numerous countries worldwide are still in the experimental phase, endorsed and regulated by governmental bodies. Colombia is one such country where the allocation of the initial 5G spectrum is anticipated in the third quarter of 2021. By scrutinizing the outcomes of the trial phase and following the roadmap outlined by the Ministry of Information and Communication Technologies (MinTIC) in Colombia, we aim to identify key aspects influencing the deployment of 5G mobile technology and the strategies for transitioning from 4G networks to a stand-alone 5G network. This analysis holds relevance for other countries in Latin America and beyond. Consequently, our objective is to condense and disseminate crucial concepts of 5G mobile technology, including massive MIMO (multiple input/multiple output) antennas, RAN (Radio Access Network), C-RAN (Centralized-RAN), and frequency bands. We also assess the current status of its implementation in Colombia.
References
Robaei, M.; Akl, R. Examining Spatial Consistency for Millimeter-Wave Massive MIMO Channel Estimation in 5G-NR. IEEE Int.
Conf. Consum. Electron. (ICCE) 2020, 9042983. [CrossRef]
Sun, L.; Li, Y.; Zhang, Z.; Feng, Z. Wideband 5G MIMO Antenna with Integrated Orthogonal-Mode Dual-Antenna Pairs for Metal-Rimmed Smartphones. IEEE Trans. Antennas Propag. 2019, 68, 2494–2503. [CrossRef]
Chataut, R.; Akl, R.; Robaei, M. Accelerated and Preconditioned Refinement of Gauss-Seidel Method for Uplink Signal Detection in 5G Massive MIMO Systems. Annu. Comput. Commun. Workshop Conf. (CCWC) 2020, 83–89. [CrossRef]
Khalid, M.; Naqvi, S.I.; Hussain, N.; Rahman, M.; Fawad; Mirjavadi, S.S.; Khan, M.J.; Amin, Y. 4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications. Electronics 2020, 9, 71. [CrossRef]
Albataineh, Z.; Hayajneh, K.; Salameh, H.B.; Dang, C.; Dagmseh, A. Robust massive MIMO channel estimation for 5G networks using compressive sensing technique. AEU Int. J. Electron. Commun. 2020, 120, 153197. [CrossRef]
Sakai, M.; Kamohara, K.; Iura, H.; Nishimoto, H.; Ishioka, K.; Murata, Y.; Yamamoto, M.; Okazaki, A.; Nonaka, N.; Suyama, S.; et al. Experimental Field Trials on MU-MIMO Transmissions for High SHF Wide-Band Massive MIMO in 5G. IEEE Trans. Wirel.
Commun. 2020, 19, 2196–2207. [CrossRef]
Ibrahim, A.A.Z.; Hashim, F.; Noordin, N.K.; Sali, A.; Navaie, K.; Fadul, S.M.E. Heuristic Resource Allocation Algorithm for Controller Placement in Multi-Control 5G Based on SDN/NFV Architecture. IEEE Access 2021, 9, 2602–2617. [CrossRef]
Wang, H.; Zhang, R.; Luo, Y.; Yang, G. Compact Eight-Element Antenna Array for Triple-Band MIMO Operation in 5G Mobile
Terminals. IEEE Access 2020, 8, 19433–19449. [CrossRef]
Elshirkasi, A.M.; Al-Hadi, A.A.; Soh, P.J.; Mansor, M.F.; Khan, R.; Chen, X.; Akkaraekthalin, P. Performance Study of a MIMO
Mobile Terminal with Upto 18 Elements Operating in the Sub-6 GHz 5G Band with User Hand. IEEE Access 2020, 8, 28164–28177.
[CrossRef]
Carrera, D.F.; Vargas-Rosales, C.; Azpilicueta, L.; Galaviz-Aguilar, J.A. Comparative study of channel estimators for massive
MIMO 5G NR systems. IET Commun. 2020, 14, 1175–1184. [CrossRef]
Ribeiro, C.; Gomes, R.; Duarte, L.; Hammoudeh, A.; Caldeirinha, R.F. Multi-Gigabit/s OFDM real-time based transceiver engine for emerging 5G MIMO systems. Phys. Commun. 2020, 38, 100957. [CrossRef]
Kim, J.; Sung, M.; Cho, S.-H.; Won, Y.-J.; Lim, B.-C.; Pyun, S.-Y.; Lee, J.-K.; Lee, J.H. MIMO-Supporting Radio-Over-Fiber System and its Application in mmWave-Based Indoor 5G Mobile Network. J. Light. Technol. 2020, 38, 101–111. [CrossRef]
Usami, M. New World Explored by 5G. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics
(ICCE), Las Vegas, NV, USA, 4–6 January 2020.
Popovski, P.; Trillingsgaard, K.F.; Simeone, O.; Durisi, G. 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access 2018, 6, 55765–55779. [CrossRef]
Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [CrossRef]
Husenovic, K.; Bedi, I.; Maddens, S.; Bozsoki, I.; Karyabwite, D.; Sundberg, N.; Maniewicz, M. Setting the Scene for 5G: Opportunities & Challenges. International Telecommunication Union. 2018. Available online: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-E.pdf (accessed on 21 June 2020).
Chaudhary, P.; Kumar, A.; Yadav, A. Pattern diversity MIMO 4G AND 5G wideband circularly polarized antenna with integrated LTE band for mobile handset. Prog. Electromagn. Res. M 2020, 89, 111–120. [CrossRef]
Chen, W.; Lv, G.; Liu, X.; Wang, D.; Ghannouchi, F.M. Doherty PAs for 5G Massive MIMO: Energy-Efficient Integrated DPA
MMICs for Sub-6-GHz and mm-Wave 5G Massive MIMO Systems. IEEE Microw. Mag. 2020, 21, 78–93. [CrossRef]
Singh, A.; Saavedra, C.E. Fluidically Reconfigurable MIMO Antenna with Pattern Diversity for Sub-6-GHz 5G Relay Node
Applications. Can. J. Electr. Comput. Eng. 2020, 43, 92–99. [CrossRef]
Xu, Z.; Deng, C. High-Isolated MIMO Antenna Design Based on Pattern Diversity for 5G Mobile Terminals. IEEE Antennas Wirel.
Propag. Lett. 2020, 19, 467–471. [CrossRef]
Alkaraki, S.; Gao, Y. mm-Wave Low-Cost 3D Printed MIMO Antennas with Beam Switching Capabilities for 5G Communication
Systems. IEEE Access 2020, 8, 32531–32541. [CrossRef]
Vojnovi´c, N.M.; Savi´c, S.V.; Ili´c, M.M.; Ili´c, A.Ž. Performance Analysis of Low-Cost Printed Antenna Array Elements for 5G
LOS-MIMO Arrays at 60 GHz. Wirel. Pers. Commun. 2020, 111, 2641–2658. [CrossRef]
Barani, I.R.R.; Wong, K.-L.; Zhang, Y.-X.; Li, W.-Y. Low-Profile Wideband Conjoined Open-Slot Antennas Fed by Grounded
Coplanar Waveguides for 4 × 45 G MIMO Operation. IEEE Trans. Antennas Propag. 2020, 68, 2646–2657. [CrossRef]
Kavitha, M.; Shanthi, S.; Beno, A.; Arul Rajan, B.; Sathish, M. Design of 2 × 2 MIMO-DRA antenna for 5g communication. Int. J.
Sci. Technol. Res. 2020, 9, 7025–7029.
El Misilmani, H.M.; El-Hajj, A.M. Massive MIMO Design for 5G Networks: An Overview on Alternative Antenna Configurations and Channel Model Challenges. Int. Conf. High Perform. Comput. Simul. (HPCS) 2017, 288–294. [CrossRef]
GSMA. 5G Spectrum GSMA Public Policy Position. 2020. Available online: https://www.gsma.com/spectrum/wp-content/uploads/2020/03/5G-Spectrum-Positions.pdf (accessed on 1 April 2021).
Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Abdulkhaleq, A.M.; Patwary, M.; Abd-Alhameed, R.A. A New CPW-Fed Diversity
Antenna for MIMO 5G Smartphones. Electronics 2020, 9, 261. [CrossRef]
Parchin, N.O.; Al-Yasir, Y.I.A.; Basherlou, H.J.; Abd-Alhameed, R.A. A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications. Prog. Electromagn. Res. C 2020, 101, 71–80. [CrossRef]
Zhang, X.-X.; Ren, A.-D.; Liu, Y. Decoupling methods of MIMO antenna arrays for 5G applications: A review. Front. Inf. Technol.
Electron. Eng. 2020, 21, 62–71. [CrossRef]
Subbaraj, S.; Kanagasabai, M.; Mohammed, G.N.A.; Palaniswamy, S.K.; Tipparaju, R.R.; Kingsly, S.; Selvam, Y.P. Integrated
G/5G Multiservice MIMO Antenna for Hand-Held Devices. Wirel. Pers. Commun. 2019, 111, 2023–2043. [CrossRef]
Tang, W.; Kang, S.; Zhao, J.; Zhang, Y.; Zhang, X.; Zhang, Z. Design of MIMO-PDMA in 5G mobile communication system. IET
Commun. 2020, 14, 76–83. [CrossRef]
Tsai, M.-D.; Yang, S.-Y.; Yu, C.-Y.; Chen, P.-Y.; Wu, T.-H.; Hassan, M.; Chen, C.-T.; Wang, C.-W.; Huang, Y.-C.; Hung, L.-H.; et al.
3 A 12nm CMOS RF Transceiver Supporting 4G/5G UL MIMO. IEEE Int. Solid State Circuits Conf. (ISSCC) 2020, 176–178.
[CrossRef]
Larsson, E.G.; Danev, D.; Olofsson, M.; Sorman, S. Teaching the Principles of Massive MIMO: Exploring reciprocity-based multiuser MIMO beamforming using acoustic waves. IEEE Signal Process. Mag. 2017, 34, 40–47. [CrossRef]
Zhu, Y.; Chen, Y.; Yang, S. Integration of 5G Rectangular MIMO Antenna Array and GSM Antenna for Dual-Band Base Station
Applications. IEEE Access 2020, 8, 63175–63187. [CrossRef]
Buzzi, S.; D’Andrea, C.; Zappone, A.; D’Elia, C. User-Centric 5G Cellular Networks: Resource Allocation and Comparison with the Cell-Free Massive MIMO Approach. IEEE Trans. Wirel. Commun. 2020, 19, 1250–1264. [CrossRef]
Bjornson, E.; Van Der Perre, L.; Buzzi, S.; Larsson, E.G. Massive MIMO in Sub-6 GHz and mmWave: Physical, Practical, and Use-Case Differences. IEEE Wirel. Commun. 2019, 26, 100–108. [CrossRef]
MinTIC. Ministry of Information and Communication Technologies—Mobile Service. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329:En-mayo-de-2021-954-localidades-de-zonas-rurales-tendran-serviciomovil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 1 April 2021).
Jungnickel, V.; Habel, K.; Parker, M.; Walker, S.; Bock, C.; Riera, J.F.; Marques, V.; Levi, D. Software-defined open architecture for front- and backhaul in 5G mobile networks. Int. Conf. Transparent Opt. Netw. (ICTON) 2014, 1–4. [CrossRef]
Chih-Lin, I.; Huang, J.; Duan, R.; Cui, C.; Jiang, J.; Li, L. Recent Progress on C-RAN Centralization and Cloudification. IEEE
Access 2014, 2, 1030–1039. [CrossRef]
Intel. Wind an Intel Company—vRAN: The Next Step in Network Transformation. Available online: https://builders.intel.com/docs/networkbuilders/vran-the-next-step-in-network-transformation.pdf (accessed on 1 April 2021).
Lin, Y.; Feng, L.; Li, W.; Zhou, F.; Ou, Q. Stochastic Joint Bandwidth and Computational Allocation for Multi-Users and Multi-Edge-Servers in 5G D-RANs. IEEE Int. Conf. Smart Cloud 2019, 65–70. [CrossRef]
Xu, J.; Dziong, Z.; Luxin, Y.; Huang, Z.; Xu, P.; Cabani, A. Intelligent multi-agent-based C-RAN architecture for 5G radio resource management. Comput. Networks 2020, 180, 107418. [CrossRef]
Mei, H.; Peng, L. Flexible functional split for cost-efficient C-RAN. Comput. Commun. 2020, 161, 368–374. [CrossRef]
Keysight. 5G Terms and Acronyms. Available online:
https://www.keysight.com/us/en/assets/7018-06171/brochures/5992-2996.pdf (accessed on 1 April 2021).
Gavrilovska, L.; Rakovic, V.; Denkovski, D. From Cloud RAN to Open RAN. Wirel. Pers. Commun. 2020, 113, 1523–1539.
[CrossRef]
Mendes, J.; Jiao, X.; Garcia-Saavedra, A.; Huici, F.; Moerman, I. Cellular access multi-tenancy through small-cell virtualization and common RF front-end sharing. Comput. Commun. 2019, 133, 59–66. [CrossRef]
McKenney, B. Open RAN: Reality or Illusion? Available online:
https://www.microwavejournal.com/articles/35108-open-ranreality-or-illusion (accessed on 1 April 2021).
Nokia. Open RAN Explained. Available online:
https://www.nokia.com/about-us/newsroom/articles/open-ran-explained/ (accessed on 1 April 2021).
Ericsson. Non-Standalone and Standalone: Two Standards-Based Paths to 5G. Available online: https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g-tracks (accessed on 1 April 2021).
GSMA. 5G Implementation Guidelines. Available online:
https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guideline-v2.0-July-2019.pdf (accessed on 1 April 2021).
Samsung. 5G Standalone Architecture. Available online:
Public.pdf (accessed on 1 April 2021).
Agiwal, M.; Kwon, H.; Park, S.; Jin, H. A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access 2021, 9,
–16210. [CrossRef]
GSMA. 5G Implementation Guidelines: NSA Option 3. Available online: https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guidelines-NSA-Option-3-v2.1.pdf (accessed on 1 April 2021).
Constain, S.; Mantilla-Gaviria, I.A.; Rueda-Jiménez, G.C.; Fernanda-Trujillo, L.; Barrera-Medina, J.G.; Thiriat-Tovar, P.E.; UstateBermúdez, A.G.; Triviño-Arbelaez, H.M.; Agudelo-Mora, O.I. Plan 5G—Colombia’s Digital Future Belongs to Everyone; Ministry
of Information and Communication Technologies of Colombia: Bogota, Colombia, 2019. Available online:
https://micrositios.mintic.gov.co/plan_tic_2018_2022/pdf/plan_tic_2018_2022_20191121.pdf (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications – Resolution number 00467 of March 9, 2020. Available online:
http://micrositios.mintic.gov.co/plan_5g/pdf/resolucion_467_2020_temporal_espectro_pruebas.pdf (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications Technology—Resolution number 003209 of 5 December 2019. Available
online: https://www.mintic.gov.co/portal/604/articles-118058_resolucion_3209_2019.pdf
(accessed on 1 April 2021).
ANE. National Spectrum Agency. Resolution Number 442 of 22 August 2013. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_0963_2019.htm (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—5G Pilot Expressions of Interest Report. 2020. Available online:
http://micrositios.mintic.gov.co/plan_5g/pdf/informe_manifestaciones_interes_piloto_5Gg_u20200311.pdf (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—Resolution number 000638 of 1 April 2020. Available online: http://micrositios.mintic.gov.co/plan_5g/pdf/resolucion_638.pdf (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—Resolution number 000722 of 30 April 2020. Available online:
https://micrositios.mintic.gov.co/plan_5g/pdf/resolucion_722.pdf (accessed on 1 April 2021).
GSMA. 5G y el Rango 3,3-3,8 GHz en América Latina November 2020. Available online: https://www.gsma.com/spectrum/wpcontent/uploads/2020/11/5G-and-3.5-GHz-Range-in-Latam-Spanish.pdf (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—Mintic Hopes to Have a 5G Auction before the End of the Government.
Available online:
https://mintic.gov.co/portal/inicio/https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-enlos-Medios/161584:Mintic-espera-tener-una-subasta-5G-antes-que-termine-el-Gobierno (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—By May 2021, 954 Rural Localities will Have 4G Mobile Service,
Announces Minister Karen Abudinen. Available online: https://mintic.gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329 :
En-mayo-de-2021-954-localidades-de-zonas-rurales-tendran-servicio-movil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—Resolution 638 of 1 April 2020. Available online:
https://micrositiosmintic.gov.co/plan_5g/pdf/infome_asignacion_5g_2.pdf (accessed on 1 April 2021).
Telefonica. Movistar Empresas and Hospital Militar Central Present Second 5G Pilot. Available online: https://www.telefonica.co/ver_noticia?id_not=409248143 (accessed on 1 April 2021).
HOMIL. Hospital Militar Central—HOMIL and Movistar Empresas Present Second 5G Pilot. Available online: https://www.hospitalmilitar.gov.co/index.php?idcategoria=69906 (accessed on 1 April 2021).
Claro. The Deployment of 5G Antennas Continues. Available online:
https://www.claro.com.co/institucional/pruebas-5g/
(accessed on 1 April 2021).
Claro. 5G Technology in Colombia: Already in Trials. Available online: https://www.claro.com.co/empresas/sectores/noticiasinteres/5g-colombia/ (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—MinTIC Assigned Spectrum to Claro to Develop 5G Trials for Six
Months. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/145864:MinTIC-leasigno-espectro-a-Claro-para-desarrollar-pruebas-5G-durante-seis-meses (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—Resolution 001039 of 23 June 2020. Available online:
https://micrositios.mintic.gov.co/plan_5g/pdf/permisos_uso_espectro_piloto_5G.zip (accessed on 1 April 2021).
Claro. Claro Expresses Interest in 5G Technology. Available online: https://www.claro.com.co/institucional/tecnologia-5g
(accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—In Colombia, 5G Networks Will Be Ready in 2022. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/101472:En-Colombia-redes-5G-estaranlistas-en-2022 (accessed on 1 April 2021).
Enter. Telefonica conducted 5G technology trial in Colombia. Available online: https://www.enter.co/empresas/colombiadigital/telefonica-prueba-5g-en-colombia/ (accessed on 1 April 2021).
Rebato, M.; Zorzi, M. A Spectrum Sharing Solution for the Efficient Use of mmWave Bands in 5G Cellular Scenarios. IEEE Int.
Symp. Dyn. Spectr. Access Netw. (DySPAN) 2018, 1–5. [CrossRef]
ANE. National Spectrum Agency—Functions. Available online:
http://www.ane.gov.co/Agencia/SitePages/MarcoEstrategico.
aspx?p=1&d=8] (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communications—Commercial Roll-Out of 5G Network. Available online: https://
www.mintic.gov.co/portal/inicio/Sala-de-Prensa/MinTIC-en-los-Medios/149152:Colombia-inicia-proceso-para-desplieguecomercial-de-red-5G (accessed on 1 April 2021).
GSMA. The WRC Series 3.5 GHz in the 5G Era Preparing for New Services in 3.3-4.2 GHz March 2021. Available online:
https://www.gsma.com/spectrum/wp-content/uploads/2021/02/3.5-GHz-for-5G.pdf (accessed on 1 April 2021).
GSA. 2020 in Review 5G networks, Spectrum & Devices (December 2020). Available online: https://gsacom.com/paper/2020-inreview-5g-networks-spectrum-devices/ (accessed on 1 April 2021).
Ericsson. Building Efficient Fronthaul Networks Using Packet Technologies. 2020. Available online: https://www.ericsson.com/en/blog/2020/4/building-efficient-fronthaul-networks-using-packet-technologies (accessed on 1 April 2021).
Pérez, G.O.; Hernández, J.A.; Larrabeiti, D. Fronthaul Network Modeling and Dimensioning Meeting Ultra-Low Latency
Requirements for 5G. J. Opt. Commun. Netw. 2018, 10, 573–581. [CrossRef]
Perez, G.O.; Lopez, D.L.; Hernandez, J.A. 5G New Radio Fronthaul Network Design for eCPRI-IEEE 802.1CM and Extreme
Latency Percentiles. IEEE Access 2019, 7, 82218–82230. [CrossRef]
MinTIC. Ministry of Information and Communications Technologies—The Spectrum Auction Last December Was Very Clear,”
Sylvia Constaín. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/Columnas-Ministra-TIC/126186 :
La-subasta-de-espectro-del-pasado-diciembre-fue-muy-clara-Sylvia-Constain (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communication Technologies—Resolution 3078 of 2019. Available online:
https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_3078_2019.htm (accessed on 1 April 2021).
MinTIC. Ministry of Information and Communication Technologies—Resolution 3121 of 2019. Available online:
https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_3121_2019.htm (accessed on 1 April 2021).
Abudinen-Abuchaibe, K.A.; Mantilla-Gaviria, I.A.; Barrera-Medina, J.G.; Ramírez-Echeverry, J.; Rueda-Pepinosa, J.D.; DávilaBarragán, J.A.; González-Cárdenas, G.; Corredor-Forero, H.A.A.; Ustate-Bermúdez, A.G.; Ruiz-Eraso, A.B.; et al. Preliminary
Analysis of the Objective Selection Process for the Allocation of Spectrum Use Permits in IMT Bands (2020). Ministry of
Information Technologies and Communications of Colombia. Available online: https://www.mintic.gov.co/portal/604/articles146624_resolucion_1322_20200727_soporte_tecnico.pdf (accessed on 1 April 2021).
Qualcomm. Global Update on Spectrum for 4G & 5G. Available online:
https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf (accessed on 1 April 2021).
ANE. National Spectrum Agency—Public consultation document on frequency bands available for the future development of International Mobile Telecommunications (IMT) in Colombia, August 2020. Available online:
on 1 April 2021).
GSMA. 5G Spectrum Positions. 2019. Available online:
https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-InfoG.pdf (accessed on 1 April 2021)